Evolutionary Algorithm Based Feature Subset Selection for Students Academic Performance Analysis
نویسندگان
چکیده
Educational Data Mining (EDM) is an emergent discipline that concentrates on the design of self-learning and adaptive approaches. Higher education institutions have started to utilize analytical tools improve students’ grades retention. Prediction performance a difficult process owing massive quantity educational data. Therefore, Artificial Intelligence (AI) techniques can be used for data mining in big environment. At same time, EDM, feature selection becomes necessary creation subsets. Since affects predictive any model, it important elaborately investigate outcome model related techniques. With this motivation, paper presents new Metaheuristic Optimization-based Feature Subset Selection with Optimal Deep Learning (MOFSS-ODL) predicting performance. In addition, proposed uses isolation forest-based outlier detection approach eliminate existence outliers. Besides, Chaotic Monarch Butterfly Optimization Algorithm (CBOA) highly features low complexity high Then, sailfish optimizer stacked sparse autoencoder (SFO-SSAE) utilized classification The MOFSS-ODL tested against benchmark student’s set from UCI repository. A wide-ranging simulation analysis portrayed improved technique over recent approaches terms different measures. Compared other methods, experimental results prove does great job academic progress, accuracy 96.49%.
منابع مشابه
A Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملA New Hybrid Feature Subset Selection Algorithm for the Analysis of Ovarian Cancer Data Using Laser Mass Spectrum
Introduction: Amajor problem in the treatment of cancer is the lack of an appropriate method for the early diagnosis of the disease. The chemical reaction within an organ may be reflected in the form of proteomic patterns in the serum, sputum, or urine. Laser mass spectrometry is a valuable tool for extracting the proteomic patterns from biological samples. A major challenge in extracting such ...
متن کاملa hybrid feature subset selection algorithm for analysis of high correlation proteomic data
pathological changes within an organ can be reflected as proteomic patterns in biological fluids such as plasma, serum, and urine. the surface-enhanced laser desorption and ionization time-of-flight mass spectrometry (seldi-tof ms) has been used to generate proteomic profiles from biological fluids. mass spectrometry yields redundant noisy data that the most data points are irrelevant features ...
متن کاملFast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets
Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Intelligent Automation and Soft Computing
سال: 2023
ISSN: ['2326-005X', '1079-8587']
DOI: https://doi.org/10.32604/iasc.2023.033791